
A Theory of Distributed Anonymous Mobile Robots
—Formation and Agreement Problems

Ichiro Suzuki
Masafumi Yamashita

TR-94-07-01
July 15, 1994

\'\1

\&0S»*)&

\

 ^Kfff \

"A^f^0"0^^ i y*f V"'""1 -■• vMr"-- ,-"--'

Department of Electrical Engineering and Computer Science
University of Wisconsin - Milwaukee

19950925161 DTI6 QU/:J ■J ö

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

19950925 161

Office of Naval Research
Arlington, Virginia

Per Anne Watson, she has no way of getting the

missing pages. The reports that are sent to us is

all that she has. When she get the pages they will

be sent to DTIC with distribution.

February 27, 1996 DSN: 226-4108
(703) 696-4108

A Theory of
Distributed Anonymous Mobile Robots
—Formation and Agreement Problems*

Ichiro Suzuki
Department of Electrical Engineering and Computer Science

University of Wisconsin - Milwaukee
P.O. Box 784, Milwaukee, WI 53201, U.S.A.

suzuki@cs.uwm.edu

Masafumi Yamashita
Department of Electrical Engineering

Faculty of Engineering
Hiroshima University

Kagamiyama, Higashi-Hiroshima 724, Japan
mak@se.hiroshima-u.ac.jp

July 15, 1994

Abstract A system consisting of multiple mobile robots in which the robots can
see each other by their eye sensors but are not equipped with any communication
system, can be viewed as a distributed system in which the components (i.e., robots)
can "communicate" with each other only by means of their moves. We use this
system to investigate, through a case study of a number of problems on the formation
of geometric figures in the plane, the power and limitations of the distributed control
method for mobile robots. In the distributed control method, each robot, at infinitely
many unpredictable time instants, observes the positions of all the robots and moves
to a new position determined by the given algorithm. The robots are anonymous in
the sense that they all execute the same algorithm and they cannot be distinguished

"This work was supported in part by the National Science Foundation under grants CCR-9004346
and IRI-9307506, and the Office of Naval Research under grant N00014-94-1-0284, and a Scientific
Research Grant-in-Aid from the Ministry of Education, Science and Culture in Japan (06680324).
An extended abstract of this paper was presented at the 31th Annual Allerton Conference on Com-
munication, Control, and Computing, University of Illinois, Urbana, Illinois, September 29-October
1, 1993.

by their appearances. The robots are not necessarily synchronous, so they may not
always observe their positions simultaneously. Furthermore, initially the robots do
not have a common x-y coordinate system. The problems we discuss include (1)
converging the robots to a single point, (2) moving the robots to a single point, (3)
agreement on a single point, (4) agreement on the unit distance, (5) agreement on
direction, and (6) leader election. We develop algorithms for solving some of these
problems under various conditions. Some impossibility results are also presented.

1 Introduction

In the last several years, interest in the distributed control method for multiple mobile
robots has increased considerably [1, 2, 7, 10]. The main idea of the method is to
let each robot execute a simple algorithm and determine its movement adaptively
based on the observed movement of other robots, so that the robots as a whole group
will achieve the given goal. This approach has been shown to be very promising
for the generation of certain patterns and collision avoidance. In the earlier works
on distributed robot control, the main emphasis is on the development of heuristic
algorithms for various problems and the presentation of simulation results, and in
many cases, formal discussions on the correctness and performance of the algorithms
are not given [1, 7].

A robot system in which the robots can communicate with each other by radio,
such as a system of radio-controlled vehicles or spaceships, can be considered as a
distributed system whose communication topology is a complete graph. Therefore,
such systems can be analyzed using the standard techniques developed for distributed
computing systems (although such analyses are by no means easy). In this paper,
we consider a system consisting of multiple mobile robots in which the robots can
see each other by their eye sensors, but they are not equipped with any communi-
cation system. The study reveals delicate interplay of a number of key concepts -of
distributed computing, such as synchrony and asynchrony, communication, termina-
tion detection, self-stabilization, anonymity of processors, and knowledge (in a casual
sense).

A basic problem for such a robot system is to design an algorithm such that, if all
the robots execute it individually, then the robots as a whole group will eventually
form the given geometric figure, such as a circle and a line segment [4, 7, 8]. The
main goal of this paper is to present some theoretical results related to this problem.
The results presented here provide useful insights that will help us to answer certain
fundamental questions, such as whether the given algorithm really solves the given
problem and, for that matter, whether the given problem is solvable at all in a strict
sense by a distributed algorithm. This work is a step toward the ultimate goal of ,
determining exactly what class of problems are solvable in a distributed manner. .„, /

We assume that each robot is a mobile processor with infinite memory and an
eye sensor, that repeatedly becomes active at unpredictable time instants. (At other
times it is inactive.) Each time a robot becomes active, it observes the positions

-A

A

f

JL_i

of all the robots in terms of its own local x-y coordinate system, and moves to a
new position determined by the given deterministic algorithm.1 The algorithm is
oblivious if the new position is determined only from the positions of the robots
observed at that time instant. Otherwise, it is not oblivious, and the new position
may depend also on the observations made in the past. To simplify the discussion,
in this paper we assume that (1) the time it takes for a robot to move to its new
position is negligibly small, and (2) a robot is a point (and hence two or more robots
can occupy the same position simultaneously). These assumptions help us to bring
out the fundamental issues of the problem, and still, many of the techniques and
results we obtain for this simplified case seem to apply (with some modifications) to
many realistic applications. (We plan to report on the case when the moves of a robot
are not instantaneous in a future paper.) The robots are synchronous if they always
become active simultaneously. Unless otherwise stated, we assume that the robots
are not necessarily synchronous. We assume that initially, the robots do not have a
common x-y coordinate system. So the local x-y coordinate systems of two robots
may not agree on the location of the origin, the unit distance, or the direction of the
positive a;-axis. The robots are anonymous in the sense that (1) they do not know
their identifiers, (2) they all use the same algorithm for determining the next position,
and (3) they cannot be distinguished by their appearances. Since a robot observes
other robots only at the moments when it becomes active, the third constraint implies
that a robot that observes other robots at two time instants may not be able to tell
which robot has moved to which position while it was inactive.

Two robots are said to be clones of each other if they have the same local x-
y coordinate system and the same initial position, and they always become active
simultaneously. Note that clones can never be separated. Throughout this paper, we
assume that no clones exist in the system.

In order to give the reader a concrete image of the robot system, in Section 3
we review some of the known heuristic algorithms for converging the robots to two
geometric figures, an approximation of a circle and a line segment. These algorithms
are oblivious.

Then we start a formal discussion on the robot system. First, we consider a simple
problem of converging the robots toward a single point. (The process of convergence
need not terminate in finite steps.) Note that since the robots do not have a common
x-y coordinate system, we cannot simply use an algorithm such as "move toward
point (0,0)". For this problem, we give two oblivious algorithms, and then discuss the
subtlety of the problem by showing how certain minor changes in the algorithm affect
the possibility of achieving the goal. We also consider a related problem of moving
the robots to a single point in finite steps. Such a problem is called a formation
problem, in contrast to a convergence problem. We show that this problem can be
solved by a nonoblivious algorithm, but not solvable by any oblivious algorithm even
for n = 2, where n is the number of robots. The corresponding convergence problem

1 Nondeterministic algorithms that allow a robot to randomly select its next position from two or
more candidates are out of the scope of this paper.

can be solved by an oblivious algorithm, as we stated above.
Second, we investigate the problem of having the robots agree on a common x-y

coordinate system. (The term "agree" is defined formally in Section 2.) Clearly, such
an agreement can greatly reduce the complexity of motion coordination algorithms.
For example, convergence toward a point mentioned in the previous paragraph can
easily be solved by moving all the robots toward point (0,0) of the common coordinate
system. The problem consists of three subproblems, agreement on the origin, agree-
ment on the unit distance, and agreement on the direction of the positive a>axis. We
show that the first two agreement problems are solvable by nonoblivious algorithms,
but the third problem is not solvable in general, even for n = 2. The last result shows
that the robots cannot agree on a common x-y coordinate system in general.

Third, we consider the case in which the robots have a sense of direction, i.e.,
the direction of the positive x-axis is the same for all robots, and the robots are
aware of this fact. For this case, we show that the robots can agree on a common
x-y coordinate system and elect a leader. We can show that once a unique leader is
elected, the robots can be moved to form any geometric figure.

Finally, we consider the case in which the robots are synchronous. It can be shown
that in this case, the robots can easily communicate with each other by means of the
distances of their moves, once they agree on the unit distance. However, it does not
imply that the robots can form any geometric figures, since they may not be able
to break certain symmetry in their initial distribution. In fact, whether or not they
can form a particular geometric figure depends both on their initial positions and on
their local x-y coordinate systems. We therefore consider the problem of determining
the class of geometric figures that the robots can form starting from the given initial
positions and their local x-y coordinate systems, using the fact that a synchronous
robot system can be viewed as an anonymous complete network, which have been
investigated, for example, in [11].

We present necessary definitions and basic assumptions in Section 2. Some of the
heuristic algorithms proposed previously are reviewed in Section 3. Convergence and
formation problems for a point are discussed in Section 4. Agreement on the origin,
unit distance, and direction are discussed in Sections 5, 6 and 7, respectively. In
Section 8 we consider the case when the robots have a sense of direction. Section 9
considers the case when the robots are synchronous. Concluding remarks are found
in Section 10.

2 Definitions and Basic Assumptions

We briefly formalize the problem described in Section 1. Let ri,r2,...,rn be the
robots in a two dimensional space. (The subscript V of r,- is used for convenience of
explanation. The robots do not know their identifiers.) We denote by Z,-, 1 < i < n,
the local x-y coordinate system of r,-. We assume that it is possible that Z,- ^ Zj
for some i and j. (If Z,- ^ Zj, then Z,- and Zj do not agree on one or more of the
following: the position of the origin, orientation, and unit distance.) As we will see

below, all the positions that r,- observes and computes are given in terms of Z,-.
We assume discrete time 0,1,2,..., and let pi(t) be the position of r,- at time

instant t, where p,(0) is the initial position of r,-. Define P(t) = {pi(t)\l < i < n)
to be the multiset of the positions of the robots at time t. (P(t) is a multiset, since
we assume that two robots can occupy the same position simultaneously.) For any
point p, we denote by \p]j the position of p given in terms of Zj, and define [-P(i)]j =
{[pi(t)]j-|l < i < n}. Thus [JP(£)]> shows how r,- views the distribution P(t) in terms

of its own Zj. Note that if Zj ^ Zk, then it is possible that [P(i)]j 4" [PCO]*? i-e-i rj
and rk may observe distribution P(t) differently. On the other hand, [.P(2)]j = [P(t)]k
may hold even if Pj(t) ^ Pk(t)- In this case, r3 and r^ are located at different positions,
but P{t) looks identical to them.

The algorithm that a robot uses is a function iß such that, for any given sequence
{Q\iPi)i (Q2,P2), • • •, (Qm,Pm) of pairs of a multiset Qt of points and a point pt <E Qe,
xl;((Q'i.iPi)i {Q21P2), • • •, (Qm,Pm)) is a point. Using iß, we can describe the positions
of the robots as follows. At each time instant t, each r,- is either active or inactive. If r,-
is inactive at t, then Pi(t +1) = Pi{t), i.e., r,- does not move. If rt- is active at t, then let
0 < t\ < t2 < • • • < tm = t be the time instants when r; was active, and for each 1 <
£ < m, let Qt = \P(ti)]i and pi = \pi(te)]i be the distribution that r, observed and the
position of r,- at te, respectively. (Note that Qe and pt are given in terms of Z,-.) Then
Pi(t + l) =p, where p is the point suchthat [p],- = i/>((Qi,pi), (^2,^2), • • •, (Qm,Pm))-
That is, n moves to point ^((Qi,pi), (^2,^2), • • •, (Qm,pTO)) of Z,-.

The formalism given above captures the intuition that r,- observes the distribu-
tion of the robots only when it is active, and that r,-'s next position can depend
only on if) and the distributions that r,- has observed so far. The up£n in pair
(Qt,Pt) shows that rt- is always aware of its current position in Z;. Algorithm iß

is said to be oblivious if ^((Qi, Pi), (^2,^2), •••, (Qm,Pm)) = ^((Qm.Pm)) for any
(QiiPi)i {Q2iP2)i • ■ ■, {QmiPm)- In this case, the move of a robot depends only on the
current configuration of the robots.

Note that the robots are anonymous in the following sense: (1) function iß is
common to all the robots, (2) the identifier V of robot r,- is not an argument of iß,
and (3) [-P(i)]; contains only the positions of the robots (but not their identities).

The robots are said to be synchronous if every robot is active at every time instant;
otherwise, they are asynchronous. If the robots are asynchronous, then we assume
that every robot becomes active at infinitely many unpredictable time instants. In
the following, unless otherwise stated we assume that the robots are not necessarily
synchronous.

If the robots are asynchronous, then the robots may not be able to obtain a
consistent snapshot of their distribution simultaneously. This, as we will see, is a
major technical difficulty in designing correct algorithms. For example, if the robots
are synchronous, then all the robots observe their initial distribution simultaneously.
So they can adopt the centroid (i.e., the arithmetic mean) of their positions as the
common origin, and the minimum nonzero distance between any two robots as the
common unit distance, assuming that not all robots are located at the same position

initially. So the robots can move to a point on the circumference of the unit circle
centered at the origin, and form an approximation of a circle.

Let 7T be a predicate over the set of multisets of points that is invariant under any
motion (i.e., rotation and parallel transformation) and uniform scaling. For example,
7T might be true iff the given points are on the circumference of a circle or on a line
segment. For such it, we consider two types of problems, the convergence problem and
the formation problem. In the convergence problem, the goal is to design an algorithm
r/> such that, as t goes to infinity, P(t) converges to a distribution that satisfies ir,
regardless of the number n of robots, the initial distribution P(0), and (if the robots
are not necessarily synchronous) which robots are active at each time instant. The
goal of the formation problem is similar, except that the robots must reach some
points satisfying 7r in finite steps and "halt". That is, there must exist some time
instant t' such that P(t') satisfies ir and pi(t') — pi(t' + 1) = • • • for all 1 < i < n.
Since the robots have no knowledge of the underlying coordinate system that we use
for describing %, all we can expect is to have the robots converge to or form a figure
similar to the given goal figure. The restriction on it stated above was introduced for
this reason. All predicates we discuss in the following satisfy this condition.

In addition to convergence and formation problems for a predicate, we discuss
agreement problems for a given concept C, where C might be a location, length or
direction. Unfortunately, it is not very convenient to do so within the framework
introduced above, since the only property of the robots that are directly observable
to us is their movement. So we extend the framework minimally as follows. We
imagine that each robot r,- has a local variable act, whose value is undefined at time
0. The problem is to design a deterministic algorithm t/> that computes the new
positions of a robot and the values to be assigned to its local variable, such that, in
any scenario that arises under tp, there exists some time instant t0 such that

1. for each 1 < i < n, the value of a,- is defined at t0 and remains unchanged after
to, and

2. the values of ai, a2,..., an at t0 "agree" on concept C.

For example, if C is location, then the second condition requires that each a; is a
position pi of Z{ and pi,P2, ■ ■ ■ ,Pn all refer to the same point p, i.e., [p]; = pi, 1 < i < n,
for some point p. (We can define a similar requirement for agreement for other
concepts or combinations of concepts.) This definition of agreement is weaker than
that of "common knowledge" that requires "Everyone knows that everyone knows
that ... that everyone knows it" for arbitrary depth [3]. It is well-known that if the
robots are not synchronous, then they cannot obtain common knowledge that does
not exist initially. Leader election is also viewed as an agreement problem, but for
this case we require that after some time to, o.{ = 1 for exactly one robot r,- (the
leader) and ctj — 0 for all other robots rj, j ^ i.

In this paper, we do not consider dynamic changes in the number of robots while
an algorithm is executed. However, using this framework, it is possible to discuss the

situation in which some robots are added and/or removed from the system dynami-
cally. By definition, an oblivious algorithm correctly solves the given problem even if
the number of robots changes a finite number of times. For non-oblivious algorithms,
we need additional assumptions. Assume that a robot becomes visible (or invisible)
when it is added (or removed) from the system, and that if the number of robots
changes, then it never changes again until all the robots have noticed the change.
Now, modify the given algorithm so that a robot executing it "resets its memory and
restarts" (i.e., it ignores the pairs (Qe,pt) for the observations made previously) if
it notices a change in the number of robots. Under these assumptions, the modified
algorithm correctly works even if the number of robots changes a finite number of
times. An algorithm having this property can be viewed as a self-stabilizing algo-
rithm, since it solves the given problem in the presence of transient failures.2 This
is an advantage of the distributed control method. In the centralized method, the
entire system can crash if the robot controlling all other robots becomes faulty (and
is removed).

3 Heuristic Algorithms

Before starting a formal study of algorithms, we first review some known heuristic
algorithms for forming a circle and a line segment. These algorithms commonly
contain a phase to intersperse the robots more uniformly on a circle or a line segment
by moving each robot away from its nearest neighbor, but for simplicity, we omit it
in the descriptions given below.

In the following, for robot r,-, furthest(r,) (resp. nearest(r,)) is any of the robots
furthest (resp. nearest) from r,- in the current configuration. (Ties can be broken
using any deterministic method.) v is the maximum distance a robot can move at a
time. It is assumed that the robots have a common sense of unit distance.

In the following, when presenting an algorithm, for convenience of discussion we
give an informal description of the behavior of a robot or robots executing it, instead
of giving a formal definition of function %j). Converting the informal description into
a formal definition is straightforward and tedious.

Algorithm tpcirchi given next was proposed by Sugihara and Suzuki [7] for con-
verging the robots to a circle with radius a, for given a. A detailed investigation of
the algorithm is found in Tanaka et al. [9].

Algorithm ^C!>c;ei
Each time r,- becomes active, it calculates the distance d to furthest(r,). If d — 2a > 0,
then it moves distance mm{d — 2a,v} towards furthest(r,). If d — 2a < 0, then it
moves distance min{2a — d, u} away from furthest(r,). □

A change in the number of robots can be viewed as a transient failure that damages the memory
of a robot, except the information on the current distribution of the robots. Since any robot can
correctly observe the current distribution, here the term self-stabilizing is used in a weaker sense
than the standard one [6].

Figure 1: Reuleaux's triangle.

As is pointed out in [7], the robots using ipcirciei sometimes converge to a Reuleaux's
triangle (Figure 1), but this small flaw can be remedied considerably by tuning the
value of v [9]. Further, Tanaka [8] recently proposed a new algorithm ^circled given
below, and showed, using simulation, that it works better than i/Wc/ei, avoiding con-
vergence to a Reuleaux's triangle when n is large.

Algorithm ^ardti
Each time r; becomes active, it calculates the distance d to the middle point M of
nearest(r;) and furthest(r,). lid—a > 0, then it moves distance mm{d—a, v} towards
M. If d — a < 0, then it moves distance min{a — d, u} away from M. □

As for the problem of forming a line segment, Hirota recently proposed the fol-
lowing algorithm inline [4].

Algorithm if>une

Each time r,- becomes active, it calculates the distance d to the point p that is the
foot of the perpendicular drop from rt- to the line £ passing through nearest(rs) and
furthest(r,). Then it moves min{<i, u} towards p. □

These algorithms are oblivious and surprisingly simple. This fact seems to demon-
strate the usefulness and potential of the distributed approach for controlling the
robots. However, the main emphasis of the works mentioned above is on the de-
velopment of heuristic algorithms and presentation of simulation results, and formal
discussions on the correctness and performance of the algorithms are not given. In
what follows, we study such distributed algorithms formally. Since the behavior of
the robots can be more complex than we might expect, we start the investigation
with a very simple problem of converging the robots to a point.

4 Convergence and Formation Problems for a Point

We start with two mutually related problems of converging the robots to a point
and moving the robots to a point. These problems are perhaps some of the simplest

problems one could consider. Nevertheless, the discussions presented in this section
can serve as an introduction to the technical results given in the rest of the paper.

4.1 Converging to a Point

Formally, the problem of converging the robots to a point is stated as the convergence
problem for predicate Trpoint, where Trpoint{pi, ■ ■ ■ ,Pn) = true iff pi = pj for any 1 <
i,j < n. We call this problem POINT. We present two oblivious algorithm for POINT
and some incorrect variations of one of them.

The following algorithm ißpointi moves each robot r, toward furthest(r,), so that the
distance between them will be reduced either by a constant factor, or by a constant.

Algorithm ißpoinn

Each time r; becomes active, it calculates the distance d to furthest (rj) and moves
distance mm{d/bi, Vi] towards furthest(r,). Here, 6, > 1 is a constant and V{ > 0 is
the maximum distance r,- can move at a time. (6, and V{ need not be the same for all
robots.) □

Remark 1 Algorithm ippointi is oblivious. Also, in ^po,nti, d and V{ are given in terms
of Z{.

Theorem 1 Algorithm ißpointi correctly solves problem POINT.

Proof Recall that P(t) denotes the distribution of the robots at time instant t. It
suffices to show that CH(P(t)) converges to a single point as t goes to infinity, where
CH denotes the convex hull. Suppose that CH(P(t)) does not converge to a single
point. Then since CH(P(t)) D CH(P(t + l)) for any time instant i, CH(P(t)) must
converge to a convex polygon C. Let D be the radius of a largest circle that fits in C.
(If C is a line segment, then let D be one half of the length of C.) Since CH(P(t)) D C
for any t, the distance between a robot and its furthest neighbor is always at least D.
So if we choose a constant e > 0 such that e < min1<t<n{.D/&j, i/j, D/(\ — 1/&;)}, then
when any robot rt- located at point p moves toward its furthest neighbor located at
point q, the new position of r, is at distance greater than e from both p and q. Then,
since G is a convex polygon, there exists a sufficiently small constant 8 > 0 (that
depends on e and C) such that, if the new position of r; is in the ^-neighborhood
8V of a corner v of C, then at least one of p and q (defined above) is not in the £-
neighborhood 8c of C. Now, since 8 can be made arbitrarily small, we may choose 8
so that 8 < e/2. Then, since CH(P(t)) converges to C, there must exist some t0 such
that for any t > t0, (1) every robot is in 8c at t and (2) there is at least one robot
in 8V of every corner v of C at t. However, we can show that the number of robots
in 8V monotonically decreases after 20) a contradiction to condition (2). To see this,
note that for every corner v of C, every robot r, at point p in 8V eventually moves,
and when it moves, it leaves the e-neighborhood ep of p. So it leaves 8V since 8 < e/2
and p £ 8V. Suppose rt- enters 8V after £o- Then as we mentioned above, either r,- or
its furthest neighbor must have been outside 8c before the move, a contradiction to
condition (1). □

Suppose we modify ißpointi, so that fr; = 1 for all the robots. This means that robot
Ti moves to the position of its furthest neighbor, if that neighbor is located within the
maximum distance that r,- can move in one step. The modified algorithm does not
solve POINT. For example, if (1) there are only two robots and either can move to
the position of the other in one move, and (2) they happen to be synchronous, then
they will continue to swap their positions forever. Also, tf>poinn fails to solve POINT
if d is defined to be the distance to a nearest neighbor of r,-. To see this, consider the
case of four robots r-i,r2, r3 and r4 in which, initially, r\ and r2 are close to each other,
r3 and r4 are close to each other, but the r^-r2 pair and the r3-r4 pair are far apart.
Suppose that only one robot becomes active at a time. Then, ri and r2 converge to
a point, and r3 and r4 converge to a point, but since this process never terminates in
finite steps, the four robots never converge to a point.

Another correct algorithm for POINT is the following. Note that this algorithm
is also oblivious.

Algorithm i\)vointi
Each time r, becomes active, it calculates the distance d to the centroid g of the
positions of the robots, and moves distance min{d/b{, z/t} towards g. Here, b{ > 1 is a
constant and V{ > 0 is the maximum distance r,- can move at a time. (6; and V{ need
not be the same for all robots.) □

We can prove the correctness of t^point2 using an argument similar to that in the
proof of Theorem 1. The proof is omitted to save space.

4.2 Moving to a Point

Next, we discuss the formation problem for predicate 7rpo,nt introduced in Subsec-
tion 4.1. We call this problem MEET. Since MEET is a formation problem, all the
robots must move to a single point in finite steps. The next theorem states that prob-
lem MEET cannot be solved by any oblivious algorithms, even if the number n of
robots is two. Recall that functions Vy„'nti and ippoint2 of Subsection 4.1 are oblivious
algorithms for solving the corresponding convergence problem POINT.

Theorem 2 There is no oblivious algorithm for solving MEET, even for the case
n = 2.

Proof Suppose that there is an oblivious algorithm ip that solves MEET for two
robots r,- and rj. Note that since %j) is oblivious, the moves of the robots depend
only on Z,-, Zj and their current positions. We first show that there exist distinct
positions p and q of r; and rj, respectively, such that either (1) if) moves r,- from p to
q, and rj from q to q, or (2) 0 moves r,- from p to p, and rj from q to p. (That is,
tp moves exactly one robot to the position of the other, if both robots become active
simultaneously.) To see this, assume that such positions do not exist. Consider a
scenario S in which r, and rj, located at distinct positions p and 5, respectively, at

10

Attached

Figure 2: (a) rt- moves but TJ does not. (b) After modification of Z{.

time t — 1, occupy the same position r at time t. Now we show that we can modify
this scenario and obtain another scenario in which the robots never occupy the same
position simultaneously. There are two cases.

Case 1: Both r,- and TJ are active at time t — 1 in S.
By assumption, r ^ p and r ^ q. So if exactly one robot, say r,-, happens to be
active at t — 1, then at time t, r,- is located at r and r,- at 9, where r ^ q.

Case 2: Exactly one robot is active at t — 1 in S.
Suppose that r,- is active at t — 1 but r, is not. Then r — q. So if both robots
happen to be active at t — 1, then at time t, r± is located at q and r,- at some
point s, where by assumption, s / q.

Using this argument repeatedly, we can construct an infinite sequence of moves in
which the robots never occupy the same position simultaneously. (We can do so in
such a way that each robot becomes active infinitely many times, since either of the
robots can be chosen to be inactive in Case 1.) So iß does not solve MEET. This is
a contradiction.

So consider an initial distribution P(0) = {p, q}, where p / q, in which r,- and
Tj are at p and q, respectively, and iß moves rt- from p to q, and rj from q to q.
See Figure 2(a). (The case in which iß moves Tj to the positions of r,- is similar.)
Now, by modifying Z{ through translation and rotation, we can construct another
configuration in which r,- observes distribution P(0) the same way as Tj does, i.e.,
[P(0)]; = [P(0)]j and [p],- = [q]j. See Figure 2(b). Then iß moves both r,- and r,- in the
same manner in the new configuration, and of course, iß moves r,- in the same manner
in both configurations (namely, from q to q). Therefore in the new configuration, iß
moves r,- from p to p, and rj from q to q. Then, since iß is oblivious, both robots
remain in their respective initial positions forever. So iß does not solve MEET. This
is a contradiction. □

Theorem 2 shows a limitation of oblivious algorithms. Although oblivious algo-
rithms are easy to understand and analyze, they may not be powerful enough to
achieve certain goals. For example, intuitively, the robots' ability to communicate
with each other could be severely limited, since memorizing some common concepts
(e.g., the size of the unit distance, the direction of north) seems to be inevitable for
effective communication.

On the other hand, MEET can be solved for two robots by a non-oblivious al-
gorithm. One such algorithm is ißmeet(2) given next. Algorithm VWe*(2)5

as well as

all other algorithms in the rest of the paper, has been written under the assumption

11

Attached

Figure 3: Illustration for ipmeet(2)-

Attached

Figure 4: The case t{ — tj.

that the robots occupy distinct positions in the initial distribution. In Appendix A,
we give an algorithm for transforming any given distribution of any number of robots
(in which some robots may occupy the same position) into one in which (1) no two
robots occupy the same position, and (2) the robots are not located on a single line
segment if n > 2, under the assumption that clones do not exist.

Algorithm VWet(2)
When r,- becomes active for the first time, it translates and rotates its coordinate
system3 Z{ so that

1. r,- is at (0,0) of Z;, and

2. the other robot rj is on the positive y-axis of Z,-, say at (0, a) for some a > 0.

Then it moves in the positive x direction of Z,-, over any nonzero distance. It then
continues to move in the same direction each time it becomes active, until it observes
that the position of r,- has changed twice. (See Figure 3.)

Now, r,- knows line £ that contains the first two distinct positions of rj that ,7^
has observed. (Note that by symmetry, £ is the x-axis of r/s coordinate system Zj.)
Then using Lemma 1 given below, r,- finds the initial position of rj, and moves to the
midpoint of the initial positions of r,- and rj. □

Lemma 1 shows that robots r; and rj executing ißmeet(2) eventually find out which
of them became active first for the first time, and what their initial distribution was.

Lemma 1 Let ti and tj be the time instants at which r2- and rj, respectively, become
active for the first time in ißmeet(2)- Then the following hold.

1. The trajectory ofY,- and the trajectory ofrj are parallel iffti = tj. In this case,
each robot sees the other robot at its initial position at £,•(= tj) (Figure 4)-

3Formally, rj cannot modify Z{ in our framework. For convenience of explanation, however,
we sometimes imagine that r,- transforms Zi into a new coordinate system. The effect of such a
transformation can easily be simulated within the framework in which Z{ remains unchanged.

12

Attached

Figure 5: The case ti < tj.

2. The trajectory of r$ intersects the negative x-axis of Zi iff ti < tj. In this
case, ri sees rj at its initial position, and r; 's initial position is the foot of the
perpendicular drop from rj 's initial position to the line containing the trajectory
of ri (Figure 5).

3. The trajectory of ri intersects the negative x-axis of Zj ifftj < i,-. In this case,
rj sees r,- at its initial position, and rj 's initial position is the foot of the vertical

drop from ri's initial position to the line containing the trajectory of rj.

Proof The lemma follows immediately from the description of t/Wet(2)- a

Theorem 3 Algorithm VWet(2) solves problem MEET for the case n = 2.

Proof The key observation is the following: When r; observes that the position of
rj has changed twice, rj must have already observed that r;'s position has changed
at least once, and thus rj knows where the x-axis of Z,- is. Similarly, rj will know
that ri knows where the x-axis of Zj is. Then the correctness of ipmeet(2) follows from
Lemma 1. □

Before presenting a non-oblivious algorithm for solving MEET for three or more
robots, we discuss a technique that we use often for designing algorithms. One tech-
nical difficulty is that in general, a robot cannot determine, given the positions of
the robots observed at two time instants tx and t2, which robot has moved to which
position between ti and t2. One way to overcome this problem is to impose a bound
on the maximum distance that any robot can move while other robots remain inac-
tive, so that the robot at position p at time £1 must be at the position closest to p at
time t2. Specifically, we do the following. When robot r,- becomes active for the first
time, it memorizes the distance a; > 0 to its nearest neighbor. Then r,- moves at most
distance ait/2k in the k-th move, where 0 < e < 1/2 is a constant chosen by the algo-
rithm. This restriction assures that r,- remains in the interior of the a2e-neighborhood
of its initial position. Since the interiors of such neighborhoods of two robots located
at different positions do not intersect, any robot can correctly know the position of
r,-, even after it remains inactive for a long time. This technique and its variations
are used in ipmeet given next, iß scatter of Appendix A, and some other algorithms.

The following is a non-oblivious algorithm 0meet for solving MEET for three or
more robots. It is assumed that in the initial distribution, (1) no two robots occupy
the same position, and (2) the robots are not located on a single line segment. Ap-
pendix A explains how a given distribution can be transformed into one satisfying
these conditions.

13

Attached

Figure 6: Illustration for t/>meet-

Algorithm ipmeet
When Vi becomes active for the first time, it determines whether or not it is located
at a corner of the convex hull C of the distribution of the robots at that time instant.
There are two cases.

Case 1: r; is not at a corner of C.
Ti memorizes the position p of its nearest neighbor and the distance a8- to p. Then
it moves towards p, and continues to move toward p each time it subsequently
becomes active, staying in the interior of the (a,/2)-neighborhood of its initial
position. (See the explanation given above.)

Case 2: r; is at a corner of C.
Let a, 6, c and d be consecutive corners of C in clockwise order, where r,- is at
b. See Figure 6. Then r,- memorizes the direction that is away from a along
the line containing aft, and moves in that direction each time it becomes active,
staying in the interior of the a;e-neighborhood of b for some e < 1/2. Here,
e is chosen so that the a;e-neighborhood does not intersect the line containing
cd. (This assures that the robot rj at corner c remains to be at a corner of the
convex hulls of the new positions of the robots even after r,- and rj move.)

Robot r,- continues to move as described above, until it observes that the position of
each robot has changed at least twice. Then, r,- knows line lj that contains the first
two distinct positions of rj that r,- has observed, for each robot rj at a corner of the
initial convex hull. Since the convex hull of the initial positions of the robots is a
fc-sided polygon for some k > 3, the lines {£j} determine a unique, smallest convex
polygon Q that contains the initial convex hull. Then r; moves to the centroid of the
corners of Q. □

Theorem 4 Algorithm tf>meet solves MEET for n > 2.

Outline of Proof Using an argument similar to the one in the proof of Theorem 3,
we can show that every robot executing t/we« eventually knows the lines {£j} correctly.
(The trajectories of the robots that are not at a corner of the initial convex hull are
not used to define Q. We move such robots, however, so that other robots r; will know
that they have become active sufficiently many times and observed r,-'s movement.)
So all the robots eventually know the corners of Q. Thus i>meet solves MEET for
n > 2. □

By Theorems 3 and 4, MEET is solvable for any n > 2.

14

5 Agreement on the Origin

In this section we discuss the problem of agreement on the origin of a common x-y
coordinate system. We call this problem ORIGIN. ORIGIN is an agreement problem
for concept C as defined in Section 2, where C is a location.

Theorem 5 ORIGIN is solvable for any n > 2.

Proof As we have seen, the robots that are initially at distinct positions and exe-
cuting ißmeet(2) (f°r the case n = 2) or rßmeet (for the case n > 2) eventually know the
point at which they meet (the midpoint of the initial positions for the case n = 2,
and the centroid of the corners of Q for the case n > 2). So they can agree on that
point. □

6 Agreement on the Unit Distance

We call the problem of agreeing on the unit distance UNITDIST. This is an agreement
problem for concept C, where C is a length. So the goal is to let each robot rt- decide
on a length L, in terms of its own Z,-, so that the lengths Li, L2,... ,Ln chosen by
the robots all refer to the same physical length.

Theorem 6 UNITDIST is solvable for anyn>2.

Proof For the case n = 2, using Vwet(2)> each robot eventually finds the initial
position of the other (Lemma 1). Then they can use the distance between their
initial positions as the unit distance. For the case n > 2, the robots can choose, as
the unit distance, the length of a shortest side of the fc-sided convex polygon Q that
they obtained using algorithm ipmeet in Subsection 4.2. □

The proofs of Theorems 5 and 6 show that the robots can agree on both a point
and a length simultaneously. Thus they can agree on a circle whose center is at the
agreed point and whose radius is the agreed length. So we have:

Corollary 1 The problem of agreeing on a circle and the problem of forming an ap-
proximation of a circle (in the sense that all the robots are located on the circumference
of a common circle) are solvable for any n > 2.

7 Agreement on Direction

Now we show that the third problem of agreeing on direction is unsolvable in general.
Let us call this problem DIRECTION. Here, the concept C on which the robots agree
is a direction.

15

Attached

Figure 7: A symmetric configuration.

Theorem 7 There is no algorithm for solving DIRECTION, even if n = 2 and the
robots are synchronous.

Proof Consider two synchronous robots r,- and r,- such that initially,

1. r,- is located at position (0,0) of Z, and at position (0,1) of Zj, and

2. Tj is located at position (0,0) of Zj and at position (0,1) of Z{.

See Figure 7. Then the robots always move in the same (symmetric) manner, and
thus when r; chooses a direction, rv, chooses the opposite direction. □

Note that as we stated in Section 2, the other two agreement problems, ORIGIN
and UNITDIST, are trivially solvable if the robots are synchronous.

Using an argument, similar to that in the proof of Theorem 7, involving three
robots that initially form an equilateral triangle, we can prove the following theorem:

Theorem 8 The problem of forming a line segment is unsolvable. □

8 Robots with a Sense of Direction

We say that the robots have a sense of direction if they agree on the direction of the
positive z-axis, which we call "east." (We use "west," "north," and "south" in the
understood manner.) The main result of this section is the following.

Theorem 9 If the robots have a sense of direction, then they can agree on a common
coordinate system, and ele;t a leader.

Proof The theorem follows from the discussion given below. □

Again, it is assumed that initially, (1) no two robots are located at the same
position, and (2) the robots are not located on a single line segment if n > 2.

The argument for the case n = 2 is similar to those in the proofs of Theorems 5
and 6. Using i/)meet(2), robots r,- and TJ can adopt the midpoint of their initial positions
as the origin, and the distance between their initial positions as the unit distance.
Then, since the robots have a sense of direction, they have agreed on a coordinate
system. Finally, the robot whose initial position in the agreed coordinate system is
larger in lexicographic ordering can be selected as the leader.

For the case n > 2, we present a new algorithm, ^coordinate, that solves both the
coordinate agreement problem and the leader election problem, when the robots have
a sense of direction. (Of course, the possibility of agreement on a coordinate system
alone follows immediately from the discussions in Sections 5 and 6.)

16

Attached

Figure 8: Algorithm ^coordinate-

Algorithm ^coordinate
The idea is to choose (1) the vertical (i.e., north-south) line though the eastern-most
robots as the common t/-axis, (2) the distance between the two vertical lines, one
through the eastern-most robots and the other through the western-most robots, as
the unit distance, and (3) the horizontal (i.e., east-west) line through the northern-
most robots (excluding two special robots, as explained below) as the common x-axis.
To achieve this, the robots do the following.

1. The northern-most robot among the eastern-most robots continues to move
north within a "small" neighborhood of its initial position (as explained in
Section 4.2). All other eastern-most robots continue to move west within a
"small" neighborhood of its initial position, in such a way that they will never
become western-most.

2. The northern-most robot among the western-most robots continues to move
north within a "small" neighborhood of its initial position. All other western-
most robots continue to move east within a "small" neighborhood of its initial
position, in such a way that they will never become eastern-most.

3. The robots that are neither eastern-most nor western-most continue to move
west within a "small" neighborhood of its initial position, in such a way that
they never become western-most.

See Figure 8. Then eventually, every robot knows the trajectories of all other robots,
and chooses the line containing eastern vertical trajectory as the common y-axis, and
the. line containing the northern-most horizontal trajectory as the common x-axis.
The unit distance is chosen to be the distance between the two vertical trajectories.
The leader is the robot moving along the eastern vertical trajectory. □

The correctness of ^coordinate should be immediate from its description, once we
note that, since n > 2 and the initial distribution of the robots satisfy the assumptions
given above, the two vertical trajectories do not overlap (so the unit distance is well-
defined) and there is at least one horizontal trajectory (so the common x-axis is
well-defined). So Theorem 9 follows.

Since the leader can compute the final positions of all the robots that satisfy any
given predicate and "guide" them to their respective final positions, we obtain the
following theorem.

Theorem 10 // the robots have a sense of direction, then for any predicate ir that
is invariant under any motion and uniform scaling, the convergence and formation
problems for ir are solvable.

17

Proof Let -K be any given predicate that is invariant under any motion and uniform
scaling. We only need to show how the formation problem for TV can be solved. First,
using ^coordinate, the robots elect the leader, say robot r,-. Even after rt- is elected, the
robots except rt- continue to move within their respective "small" neighborhoods of
their initial positions, as specified in tp coordinate- Then r, computes a final position pj
for every robot rj, such that pj is to the east of r;'s own vertical trajectory and the
multiset {pj} satisfies w. (Recall that TT is invariant under any motion. Also, since r,- is
one of the eastern-most robots, the final positions pj are all to the east of the current
positions of the robots.) Now, r, "guides" all other robots to their respective new
positions one by one. Specifically, rt- selects one robot rj at a time and moves to the
current position of rj. It is possible that rj moves to a new position simultaneously,
but r,- is now on the trajectory of rj and within the "small" neighborhood that rj uses.
Since no other robot can enter this region, rj knows that r,- has selected rj. When r,-
observes that rj moves again, r2 knows that rj knows that rj has been selected. So
r4- moves to pj and waits until rj moves to that point. (Meanwhile, rj moves to the
position where r,- has moved to. Here, if it takes two or more steps for r,- to reach pj,
then r; moves monotonically eastbound to pj, so that rj knows that rj has reached pj
when r,- moves westbound after rj catches up with r;.) Robot r; does this repeatedly
for all other robots, and then moves to its own final position p,-. □

In particular, from Theorem 10 we have:

Corollary 2 If the robots have a sense of direction, then the problem of forming a
line segment is solvable.

9 Synchronous Robots

In this section, we characterize the the class of geometric figures that the robots
can form, under the assumption that they are synchronous. Again, we assume that
initially, all robots occupy distinct positions. In addition, for simplicity of explanation,
we assume that (the robots know that) each robot r, is located at the origin of its
coordinate system Zt at time 0. Essentially the same results hold even without this
assumption.

What geometric figures can be formed depends not only on the given initial po-
sitions of the robots, but also on their local x-y coordinate systems. For example,
suppose that initially, four robots ra, r2, r3 and r4 form a square in counterclock-
wise order, where r2 is at position (1,0) of Z\, r3 is at position (1,0) of Z2, and
so on. See Figure 9. Then the robots have the same "view", and since the clocks
are synchronized and the algorithm they use is deterministic, they can never break
symmetry (and intuitively, they continue to form a square all the time). On the other
hand, if the direction of the positive x-axis happens to be the same for all four robots
(Figure 10), then the robots can easily discover this fact and elect the robot that is
northern-most among the eastern-most robots as the leader (and form any geometric

18

Attached

Figure 9: A symmetric configuration of four robots.

Attached

Figure 10: A configuration that is not symmetric.

figure). Intuitively, in this case every robot has a unique "view," and thus the robots
can elect a leader using a suitable total ordering of the "views." In the following, we
formalize this observation.

Following [11], the view of robot r,- at time t, denoted Vi(t), is defined recursively
as a rooted infinite tree as follows.

1. The root of Vi(t) has n — 1 subtrees, one for each robot rj, j ^ i.

2. The edge from the root of Vi(t) to the subtree corresponding to r, is labelled
((a, b), (c, d)), where (a, b) is the position of TJ in terms of Z,-, and (c,d) is the
position of r,- in terms of Zj.

3. The subtree corresponding to rj is the view Vj(t) of rj at time t.

Note that each vertex of Vi(t) corresponds to a robot, but it is not labelled as such.
Two views Vi(t) and Vj(f) are said to be equivalent, written Vi(t) = Vj(t'), if they are
isomorphic to each other including the labels.

K(0) is thus the view of r,- when it becomes active for the first time. Note that
since the robots occupy distinct positions at time 0, the edges incident on the root
of K(0) have distinct labels. Since at time 0 the robots have no knowledge of other
robots' local coordinate systems, at time 0 robot rt- does not know its view K'(0).

It is possible for the robots to obtain sufficient information to construct their
views. The following algorithm achieves this.

Algorithm ipgetview

At time 0, the robots adopt the minimum distance between any two robots as the
common unit distance. Then each robot rt- moves in the direction of its positive x-axis
over distance /(</,■)/2 measured in terms of the common unit distance, where di > 0
is the common unit distance measured in terms of Z{ and for x > 0, f{x) = 1 — 1/2*
is a monotonically increasing function with range [0,1). When the robots become
active at time 1, they all return to their respective initial positions.4 □

If the maximum distance that r,- can move in one step is smaller than /(c?,)/2, then we can let r*
continue to move in the same direction until the total distance of the moves is exactly f(di)/2. Since
the robots are synchronous, they can wait until all robots have moved over the desired distances
and stop, and then return to their initial positions, possibly using the same technique.

19

At time 1, r; knows, for each robot r,-, the direction of the positive x-axis and
the unit distance of Zj. Thus, since by assumption the origin of Zj is the same as
the initial position of r,, rt- knows Zj and the the positions of all the robots in terms
of Zj. Using this information, r,- can construct its view K'(0). Note that since each
robot returns to its initial position when it moves at time 1, we have K'(0) = K(2).

Let m be the size of a largest subset of robots having an equivalent view at time
0. If m = 1, then every robot has a unique view, and thus once Algorithm ipgetview is
executed, using a suitable total ordering over the views, the robot having the largest
view can be chosen as the leader, and thus the robots can form any geometric figure,
as explained in the proof of Theorem 10. So in the following, we consider the case
m > 2. Lemmas 2, 3, 4 and 5 given below refer to a fixed initial configuration with
m>2.

Lemma 2 The robots can be partitioned into n/m groups ofm robots each, such that
two robots have an equivalent view iff they belong to the same group.

Proof The claim is trivial if m = n. So assume that m < n, and without loss of
generality suppose that V^O) = V2(0) = ■■■ = Vm(0) but Va(0) ^ Vm+1(0). That is,
ri, r2,..., rm have an equivalent view at time 0 but rm+i does not. Let ((a, b), (c, d))
be the label of the edge from the root of Vi(0) to the vertex corresponding to rm+1.
Since Vi(0) = V^O) = • • • = Vm(0), for each £, 1 < £ < m, there exists an edge with
label ((a, b), (c, d)) from the root of Ve(0) to a vertex corresponding to some robot
rit, where rtl = rm+i. Now we show that the robots r^, r,2, ..., r,m are all distinct.
To see this, note that by symmetry, there is an edge with label ((c, d), (a, b)) from
the root of 1^(0), leading to a vertex that corresponds to robot 77. So if rtl = r;2,
for instance, then we have r\ = r2, a contradiction. Thus r,j, r,-2, ..., r,-m are all
distinct. Furthermore, since Vi(0) = V?(Q) = ••• = K„(0) and Vit(0) is a subtree of
14(0) connected to the root of \4(0) by an edge with label ((a, 6), (c, d)) for each £,
we have V^x (0) = K2(0) = • • • = Km(0). Thus there are at least m robots (including
rm+1) having a view equivalent to that of rm+\. But then, there must be exactly m
such robots, since there cannot exist more than m such robots by the definition of m.
The lemma follows from this observation. □

Lemma 3 At time 0, the robots in the same group form a regular m-gon, and the
regular m-gons formed by all the groups have a common center.

Proof Suppose that Vi(0) = V^O) = ••• = Vm(0), that is, ri,r2.,... ,rm have an
equivalent view at time 0. Consider the initial positions p1(0),p2(0),... ,pm(0) of
these robots. Clearly at least one of Pi(0),p2(0),... ,pm(0) is a corner of the convex
hull C of {p1(0),p2(0),...,pm(0)}. Then, since V[(0) = V2(0) = ••• = Vm{0), each
of jpi(0),p2(0),... ,Pm(0) must be a corner of C. Without loss of generality assume
that Pi(0),p2(0),.. • ,pm(0) occur in counterclockwise order around the convex hull.
(See Figure 11.) Since 1^(0) = V2(0) = ■■■ = Vm(0), the internal angles of C
at the corners pi(0),p2(0),... ,pm(0) must be all identical, and the lengths of the

20

Attached

Figure 11: Illustration for the proof of Lemma 3, for the case m = 4.

edges of the convex hull must be all identical. (If Pi(0)j>2(0) looks shorter than
^2(0)^3(0) to r2, then P2(0)j>3(0) should look shorter than p3(0)p4(0) to r3, and so on,
leading to a conclusion that Pi(0)p2(0) is shorter than pi(Q)p2(Q), a contradiction.)
So £>i(0),/>2(0),... ,pTO(0) form a regular m-gon.

Suppose that at time 0, rm+i,rm+2,... ,r2m also have a view that are mutually
equivalent, and that their respective positions pm+i(0),pm+2(0),... ,p2m(0) appear
in counterclockwise order around the regular m-gon they form. Then again, since
Vi(0) = ^(0) = ••• = Vm(0), the position of pTO+1(0) relative to p\ is the same
as the position of pm+2(0) relative to P2, and so on. (See Figure 11.) So the
regular m-gon formed by Pi(0),p2(0),... ,pm(0) and the regular m-gon formed by
iWi(0),pm+2(0),... ,P2m(0) have the same center. □

Lemma 4 For any (deterministic) algorithm tp, at any time instant t, the robots in
the same group form a regular m-gon, and the regular m-gons formed by all the groups
have a common center.

Proof Suppose that Vi(0) = 14(0) = ••• = Ki(0), that is, ri,r2,.. .,rm have an
equivalent view at time 0. Now, since the initial distribution of the robots looks
identical to rl5 r2,..., rm, the new positions they compute using if) and their respective
Z\, Z2,..., Zm are all identical. Also, since Vi(0) = V^O) = • • • = Vm(0), the center
of the regular m-gon that r1? r2,..., rm form at time 0 has the same x-y coordinates
in all of Zi, Z2,. ■ ■, Zm. This means that r1? r2,..., rm move in a symmetric manner
relative to the center of the regular m-gon, and thus at time 1 they again form1 a
regular m-gon with the same center. The same applies to all n/m groups, and since
the robots are synchronous, at time 1 they together form a collection of n/m regular
m-gons all having the same center. Since the robots in the same group have observed
the same robot distributions, their next move at time 1 are also symmetric relative to
the center of the regular m-gon they currently form. So again, at time 2 the robots
form a collection of n/m regular m-gons all having the same center. Continuing in the
same manner, we can prove that at any time instant t, the robots form a collection
of n/m regular m-gons all having the same center. □

Conversely, we have:

Lemma 5 For any multiset F of points that can be partitioned into n/m regular m-
gons all having the same center, there exists a deterministic algorithm ip for forming
a figure similar to F starting from the initial configuration. (The algorithm does not
depend on the initial configuration.)

21

Proof We fix a total ordering over views. Also, we fix an ordering of the n/m regular
m-gons in F. The idea is to move the robots in the j-th group in the ordering of
views to the corners of the j-th regular m-gon. Specifically, first the robots execute
Algorithm ipgetview, so each robot knows the rank of the group it belongs to. (Note
that the robots can detect the termination of tpgetview simultaneously.) The robots in
the first group need not move any more, since the m-gon they form are similar to the
corners of the 1st m-gon of F (except when the 1st m-gon is a point, in which case
the robots must move to the point). Then each robot in the 2nd group computes the
position of a corner of the 2nd m-gon of F (relative to the location of the 1st m-gon of
F) that is closest to its current position (breaking ties in any deterministic manner),
and moves to that position. The robots in the 3rd group continues next, and so on.
Then eventually, a figure similar to F is formed. □

The following theorem summarizes the discussion given above.

Theorem 11 Let m be the size of a largest subset of robots having an equivalent view
at time 0. There exists a deterministic algorithm ip for forming a figure similar to a
multiset F of points iff F can be partitioned into n/m regular m-gons all having the
same center.

Proof The theorem follows from Lemmas 4 and 5. □

10 Concluding Remarks

We viewed a group of mobile robots as a distributed system in which the components
can communicate with each other only by means of their moves, and investigated the
possibility and impossibility of solving some of the problems related to the formation
of geometric figures in the plane. Our study indicates that the assumptions we make
on the knowledge and capabilities of the robots can affect the difficulty of solving the
given problem in a subtle way. We are currently conducting similar investigations
on (1) randomized algorithms, (2) the case in which the motion of a robot is not
instantaneous, and (3) the 3-dimensional case. The results will be reported in a
future paper.

Appendix A

Under the assumption that clones do not exist, the following algorithm i/> scatter trans-
forms any given distribution of any number of robots (in which some robots may
occupy the same position) into one in which (1) no two robots occupy the same po-
sition, and (2) the robots are not located on a single line segment if n > 2. Part 1 of
^scatter moves all the robots to distinct positions, and Part 2 assures that the robots
do not form a single line segment. The idea in Part 1 is the following. Suppose r;
and 7*j occupy the same position initially. We let each robot move repeatedly, in the

22

directions of their respective positive x-axes, over distances that depend on the unit
distances of their respective local coordinate systems. Then since rt- and r, are not
clones, either they move in different directions, they move over different distances,
or eventually only one of them becomes active and move. So r,- and Tj eventually
distinct positions. We do this in such a way that no two robots that occupy distinct
positions initially will move to the same position.

Algorithm ^scatter
Part 1: Suppose that robot r,- becomes active and finds that not all robots occupy
distinct positions. (Otherwise, Part 1 is over.) Let Pr be the positions of the robots
that rt- observes, given in terms of Zr.

Case 1.1 If no other robot is located at the current position of r,-, then r,- does not
move, until it (becomes active later and) observes that all robots occupy distinct
positions.

Case 1.2 On the other hand, if m other robots are located at the current position
of r,-, where m > 1, then r,- finds the distance a; > 0 to its nearest neighbor
(excluding those at the current position of r,-), and computes the value b{ =
ot-/(a,-)/2, where for x > 0, f(x) = 1 — l/2:r is a monotonically increasing
function with range [0,1). (Note that a,- is given in terms of Z{. So if another
robot rj located at the same position as r,- finds its own a,j in terms of Zj,
then /(a,) ^ f(aj) unless the unit distances of Z, and Zj are identical.) Then
r,- moves over distance 6,/2 in the positive z-direction of Z{. After that, each
time r; becomes active and finds that there are still m other robots at the same
position as itself, r,- moves over distance bi/2k in the same direction, if that is
the k-th move (k = 2, 3,...). When r,- eventually becomes active and finds that
there are fewer than m other robots at the same position as itself, r; repeats this
entire procedure from the beginning of Case 1.2, using a new value of a; (and
resetting k). This process is repeated each time rt- finds that fewer robots are
located at the same position as itself, until no other robot is found to occupy
the same position as r,-. Then r,- waits, without moving, until all robots occupy
distinct positions.

Then r; proceeds to Part 2.
Part 2: (At this moment, all the robots occupy distinct positions.) Suppose that
robot T{ becomes active and finds that the robots are located on a single line segment.
(Otherwise Part 2 is over.) If r,- is located at an endpoint of the segment, then it does
not move. If r4- is not at an endpoint, then r,- moves over any distance in the direction
perpendicular to the segment. (As soon as some robot does this, the robots no longer
form a single line segment, and of course, all the robots occupy distinct positions.) □

Lemma 6 Algorithm tßscatter transforms any given distribution of the robots into one
in which (1) no two robots occupy the same position and (2) the robots are not located
on a single line segment if n > 2.

23

Proof In Part 1, no two robots that are at distinct positions ever occupy the same
position, since during the execution of Case 1.2 for each fixed value of m, robot re-
moves over distance at most

bt/2 + k/4 + ■■■ <bt = aif(ai)/2 < ai/2,

where a,- is the distance from r,- to any nearest robot not located at the same position
at the beginning of Case 1.2. Since clones do not exist, any robot r, that initially
occupies the same position as rt- eventually moves to a different position than rt-, since
either (a) their x-axes have different orientations, (b) their unit distances are different
and thus /(a;) ^ f(aj), or (c) only one of them becomes active and moves. In Part 2,
since the robots at the endpoints of the line segment do not move, as soon as any one
robot moves as specified, that robot and the robots at the endpoints form a triangle.
D

References

[1] K. Fujimura, "Model of reactive planning for multiple mobile agents," Proc.
IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, June 1991, pp.
1503-1509.

[2] T. Fukuda and S. Nakagawa, "Approach to the dynamically reconfigurable robot
systems," Journal of Intelligent and Robotics Systems 1, 1988, pp. 55-72.

[3] J. Y. Halpern and Y. Moses, "Knowledge and common knowledge in a distributed
environment," J. of the ACM 37, 3, July 1990, pp. 549-587.

[4] N. Hirota, private communication, 1992.

[5] Y. Saito, private communication, 1992.

[6] M. Schneider, "Self-stabilization," ACM Computing Surveys 25, 1, 1993, pp.
45-67.

[7] K. Sugihara and I. Suzuki, "Distributed motion coordination of multiple mobile
robots," Proceedings of the 5th IEEE International Symposium on Intelligent
Control, Philadelphia, Pennsylvania, September 1990, pp. 138-143.

[8] 0. Tanaka, private communication, 1992.

[9] 0. Tanaka, M. Yamashita and I. Suzuki, "A note on motion coordination of
distributed autonomous robots," (in Japanese) Proceedings of the 1993 Joint
Symposium on Electronics and Information, Institute of Electronics, Information
and Communication Engineers, Yamaguchi, Japan, October 1992.

24

[10] J. Wang and G. Beni, "Cellular robotic systems: Self-organizing robots and
kinetic pattern generation," Proc. of the 1988 IEEE International Workshop on
Intelligent Robots and Systems, Tokyo, Japan, 1988, pp. 139-144.

[11] Yamashita, M., and Kameda, T., "Computing on anonymous networks," Proc.
7th ACM Symposium on Principles of Distributed Computing, 1988, 117-130.

25

EL<L_2_

/K-

- -4- h-
fr

h
-y= "»XT

-£-•
*5~

«?

X f-
'Ö

.. Z

M
f

(b)

.fjui 7k-

J-i-fo.a)

z,

%A

k—4 M-^^

V

1
)

]

•>-T-

z.

B.q,_5

^••»■»■»■?-»-»^ f

FTq ■i
■j

-t ■-<- -»>

J

O

3,
-^ I

Zc-

jj^m; \ dfitftH^
K-

^ *

1 &>«£

{■4-f-#—

X~d«Y

..,.W.
«-# <<«-♦

1 a< •ßcxae^

«■*-<>

.«-<-<

i

«*«

¥ - ■—• ■• — — —

1 -a

 n ■■- -- --

<

3

JL___..

X

""" ~T
 *

»

 —- -

i • / v* i >

r, X 1 . r*

— — — -

fr.« .JO

V
1

Tu

"~?K

